Subchondral pre-solidified chitosan/blood implants elicit reproducible early osteochondral wound-repair responses including neutrophil and stromal cell chemotaxis, bone resorption and repair, enhanced repair tissue integration and delayed matrix deposition

نویسندگان

  • Charles-Hubert Lafantaisie-Favreau
  • Jessica Guzmán-Morales
  • Jun Sun
  • Gaoping Chen
  • Adam Harris
  • Thomas D Smith
  • Alberto Carli
  • Janet Henderson
  • William D Stanish
  • Caroline D Hoemann
چکیده

BACKGROUND In this study we evaluated a novel approach to guide the bone marrow-driven articular cartilage repair response in skeletally aged rabbits. We hypothesized that dispersed chitosan particles implanted close to the bone marrow degrade in situ in a molecular mass-dependent manner, and attract more stromal cells to the site in aged rabbits compared to the blood clot in untreated controls. METHODS Three microdrill hole defects, 1.4 mm diameter and 2 mm deep, were created in both knee trochlea of 30 month-old New Zealand White rabbits. Each of 3 isotonic chitosan solutions (150, 40, 10 kDa, 80% degree of deaceylation, with fluorescent chitosan tracer) was mixed with autologous rabbit whole blood, clotted with tissue factor to form cylindrical implants, and press-fit in drill holes in the left knee while contralateral holes received tissue factor or no treatment. At day 1 or day 21 post-operative, defects were analyzed by micro-computed tomography, histomorphometry and stereology for bone and soft tissue repair. RESULTS All 3 implants filled the top of defects at day 1 and were partly degraded in situ at 21 days post-operative. All implants attracted neutrophils, osteoclasts and abundant bone marrow-derived stromal cells, stimulated bone resorption followed by new woven bone repair (bone remodeling) and promoted repair tissue-bone integration. 150 kDa chitosan implant was less degraded, and elicited more apoptotic neutrophils and bone resorption than 10 kDa chitosan implant. Drilled controls elicited a poorly integrated fibrous or fibrocartilaginous tissue. CONCLUSIONS Pre-solidified implants elicit stromal cells and vigorous bone plate remodeling through a phase involving neutrophil chemotaxis. Pre-solidified chitosan implants are tunable by molecular mass, and could be beneficial for augmented marrow stimulation therapy if the recruited stromal cells can progress to bone and cartilage repair.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Acute Osteoclast Activity following Subchondral Drilling Is Promoted by Chitosan and Associated with Improved Cartilage Repair Tissue Integration

OBJECTIVE Cartilage-bone integration is an important functional end point of cartilage repair therapy, but little is known about how to promote integration. We tested the hypothesis that chitosan-stabilized blood clot implant elicits osteoclasts to drilled cartilage defects and promotes repair and cartilage-bone integration. DESIGN Bilateral trochlear defects in 15 skeletally mature rabbit kn...

متن کامل

Bone-Induced Chondroinduction in Sheep Jamshidi Biopsy Defects with and without Treatment by Subchondral Chitosan-Blood Implant

OBJECTIVE Delivery of chitosan to subchondral bone is a novel approach for augmented marrow stimulation. We evaluated the effect of 3 presolidified chitosan-blood implant formulations on osteochondral repair progression compared with untreated defects. DESIGN In N = 5 adult sheep, six 2-mm diameter Jamshidi biopsy holes were created bilaterally in the medial femoral condyle and treated with p...

متن کامل

Chitosan-glycerol phosphate/blood implants increase cell recruitment, transient vascularization and subchondral bone remodeling in drilled cartilage defects.

OBJECTIVE Marrow-stimulation techniques are used by surgeons to repair cartilage lesions although consistent regeneration of hyaline cartilage is rare. We have shown previously that autologous blood can be mixed with a polymer solution containing chitosan in a glycerol phosphate (GP) buffer (chitosan-GP), and that implantation of this polymer/blood composite onto marrow-stimulated chondral defe...

متن کامل

Presentation of a novel model of chitosan- polyethylene oxide-nanohydroxyapatite nanofibers together with bone marrow stromal cells to repair and improve minor bone defects

Objective(s):Various methods for repairing bone defects are presented. Cell therapy is one of these methods. Bone marrow stromal cells (BMSCs) seem to be suitable for this purpose. On the other hand, lots of biomaterials are used to improve and repair the defect in the body, so in this study we tried to produce a similar structure to the bone by the chitosan and hydroxyapatite. Materials and Me...

متن کامل

Treatment of Osteochondral Lesions of the Talus With Bone Marrow Stimulation and Chitosan-Glycerol Phosphate/Blood Implants (BST-CarGel).

Bone marrow stimulation (BMS) techniques represent the first-line treatment for unstable osteochondral lesions of the talus or after conservative treatment failure. These techniques are intended to penetrate the subchondral bone to elicit bleeding and allow precursor cells and cytokines from bone marrow to populate the lesion. However, the fibrocartilaginous repair tissue arising after marrow s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2013